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Abstract

Strange baryons have long been known to exhibit a leading particle effect. A recent comparison
of Ξ− production in π−, n, and Σ− interactions with nuclei show this effect clearly. These data are
supplemented by earlier measurements of Ξ− and Ω production by a Ξ− beam. We calculate the
Ξ− and Ω xF distributions and nuclear dependence in hA interactions using the intrinsic model.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Leading particle effects, flavor correlations between the final-state hadron and the
projectile valence quarks, have long been observed in strange particle production.Although
many experiments have recently focused on leading charm production [1–10], the first
data involved strange particles [11–16]. With new data from the WA89 Collaboration on
Ξ−(dss) production by π−(ūd), n(udd), and Σ−(dds) projectiles on nuclear targets [17],
in addition to Ξ− production data from Ξ− beams [14], doubly strange hadron production
can be studied as a function of the number of strange valence quarks in the projectile.
We compare our model calculations to both the xF distributions and the integrated A
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dependence reported by WA89 [17]. We also discuss Ξ− and Ω(sss) production by the
Ξ− beam [14].

The WA89 Collaboration used carbon, C, and copper, Cu, targets to study the A

dependence of Ξ− production by π−, n, and Σ− beams [17]. The negative beams, π− and
Σ−, had an average momentum of 345 GeV with a 9% momentum spread. The neutron
beam had a lower momentum with a larger spread than the negative beams—the average
momentum was 260 GeV with a 15% uncertainty. The detected Ξ− was in the forward
xF region, xF � 0.05, with low transverse momentum, pT � 2.5 GeV. The data were
parameterized in the form

dσ

dp2
T dxF

∝ (1 − xF )ae−bp2
T . (1)

The pion and neutron results agree with the functional form of Eq. (1) over all xF . For the
pion, a = 3.8±0.3 for C and 4.1±0.3 for Cu while for the neutron a = 5.0±0.3 for C and
4.8 ± 0.3 for Cu. These results are consistent with expectations from spectator counting
rules [18], dσ/dxF ∝ (1 − xF )2ns−1. With an incident gluon, ns = 2 for pions and 3 for
neutrons, consistent with no leading particle effect for projectiles with zero strangeness.
There is no significant A dependence of the exponent a.

On the other hand, the Σ− data cannot be fit to Eq. (1) for xF < 0.4. In the large
xF region, a = 2.08 ± 0.04 for C and 1.97 ± 0.04 for Cu. These results indicate a very
hard xF distribution, inconsistent with the counting rules even for a valence quark since
ns = 2 gives (1 − xF )3. In addition, at xF < 0.4, the distribution is independent of xF for
both targets. Thus these data show a strong leading particle effect since the Ξ− has two
valence quarks in common with the Σ−. The statistics are also sufficient for an observable
A dependence in the fitted values of a.

The integrated A dependence was also reported by WA89 [17]. The A dependence of
the total cross section is often parameterized as

σpA = σppAα. (2)

The integrated α for Σ− production of Ξ−, α = 0.679 ± 0.011 [17], is in relatively good
agreement with previous fits. However, the pion and neutron data show a closer-to-linear
A dependence, α = 0.891 ± 0.034 and 0.931 ± 0.046, respectively. WA89 attributes this
difference to the fact that two ss̄ pairs must be produced to make the final-state Ξ− and ss̄

pair production would be suppressed relative to light qq̄ production.
WA89 has also measured the dependence of α on xF . This dependence, α(xF ), was

previously reported for a wide range of hadron projectiles [19]. For non-strange hadrons
and hadrons with a single strange quark, there is a common trend with xF . At xF = 0,
α ≈ 0.8 and decreases to ≈ 0.5 at large xF , an overall decrease of ∼ A1/3 for 0 < xF < 1.
The Ξ0, the only doubly-strange hadron included in Ref. [19], is an exception. In pA

interactions, the Ξ0 has a larger value of α at low xF [16]. A similar effect is observed for
Ξ− production by WA89. Their measurements of α(xF ) for Ξ− from pion and neutron
beams show that α ∼ 1 for xF ∼ 0.05, decreasing to α ∼ 0.7 at higher xF . Thus the
decrease of α with xF is also ≈ A1/3 in this case although the actual values of α are larger
than those for lighter hadrons [19]. However, for Σ−-induced Ξ− production, α ∼ 0.7
almost independent of xF .
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The other data we consider are Ξ−Be → Ξ−,Ω at 116 GeV, measured by Biagi
et al. [14]. In this case, the final-state Ξ− xF distribution increases with xF , as does
the Ω xF distribution. This increase could be due in part to the use of an invariant
parameterization [14],1

E
dσ

dp3 ∝ (1 − xF )a
′
e−b′p2

T , (3)

which fits the Ξ− data at xF > 0.5 but only approximately fits the Ω data in this limited
region. The exponent a′ was fit in two p2

T intervals, p2
T < 0.4 GeV2 and 0.4 < p2

T <

2.9 GeV2, yielding a′ = −0.45 ± 0.02 and −0.18 ± 0.03, respectively. Between the most
central measurement, xF = 0.15, and the projectile fragmentation region, xF = 0.85, the
Ξ− cross section increases by a factor of ∼ 40 in the low p2

T interval.
A comparison of these results with incident proton data [14], pA → Ξ−X [11,20]

and pA → pX [21], showed that, at low xF , Ξ− production is essentially independent
of the projectile while, at high xF , the features of Ξ−A and pA scattering are similar.
This behavior supports valence quark domination at high xF . The structure of the Ω xF

distribution is similar: it is of the same order of magnitude as pA → ΩX [11] at low xF but
is similar to singly strange baryon production by protons, pA → ΛX,Σ+X [11,20,22], at
high xF .

Since only one target was used, α = 0.6 was assumed in Eq. (2) to obtain the per
nucleon cross sections. This extrapolated cross section is a factor of 1.5–2 higher than
those on hydrogen targets [14]. An extrapolation with α = 1 gives better agreement with
the hydrogen target data, at least for Ξ− production.

We employ the intrinsic model [23–27], developed for strangeness production in
Ref. [28]. In the intrinsic model, a hadron can fluctuate into Fock state configurations with
a combination of light and strange quark pairs. The heavier quarks in the configuration
are comoving with the other partons in the Fock state and thus can coalesce with these
comoving partons to produce strange hadrons at large xF . The model combines leading-
twist production of ss̄ pairs with intrinsic Fock states with up to nine particles. Thus
coalescence production of the Ω from a proton is possible.

In Section 2, we describe leading-twist production of strange hadrons and explore some
of the uncertainties in these calculations. Section 3 briefly describes the intrinsic model
while section 4 discusses the A dependence of the combined model. In Section 5, we
compare our calculated xF and A dependencies with the Ξ− and Ω data. Finally, in
Section 6, we draw our conclusions.

2. Leading-twist production

We calculate leading-twist strangeness to leading order (LO) in perturbative QCD,
assuming the strange quark is massive. We note, however, that quarks lighter than charm
are difficult to treat perturbatively [29,30]. The strange quark is considerably lighter than

1 For the two parameterizations to be equivalent, the right-hand side of Eq. (1) should be multiplied by 2E/
√

s

to obtain the invariant cross section.



R. Vogt, T.D. Gutierrez / Nuclear Physics A 726 (2003) 134–156 137

the charm quark, ms ≈ 150–500 MeV ≈ (1/10–1/3)mc. We cannot treat the lighter end
of this mass range in our model at all since ms ∼ 150 MeV ∼ ΛQCD. This mass is less
than the minimum scale, µ0, of all parton distribution functions and the strong coupling
constant, αs , blows up.

We choose proton parton distribution functions with the lowest possible initial scale µ0
consistent with ms > µ0. Therefore, the baryon parton distribution functions are based on
the GRV 94 LO proton parton distributions [31] with µ2

0 = 0.4 GeV2. We use the most
recent pion parton densities by Glück et al. [32]. To be conservative, we assume that the
scale µ at which the strong coupling constant and the parton densities are evaluated is

µ = 2mT where mT =
√

p2
T + m2

s and ms = 500 MeV. We will discuss the dependence
of the leading twist results on these choices, albeit in a rather limited range. The xF

distributions, obtained by integrating Eq. (1) or (3) over pT , are dominated by low pT

production.
We treat the strange quark as heavy, as in Ref. [28], rather than as a massless parton

in jet-like processes. Treating the strange quark as a jet means selecting a minimum pT

to keep the cross section finite. A large minimum pT compatible with hard scattering is
incompatible with the assumption of intrinsic production, inherently a low pT process [25].
Strange hadrons can either be produced directly in jet production or by the fragmentation
of light quark and gluon jets. However, there is no indication that these data originate
from jets. To test the dependence of our results on the production mechanism, we will
also consider the possibility of flavor excitation, a jet-like process, when the projectile has
non-zero strangeness.

We denote the leading-twist xF distribution of heavy quark production [33] by F ,

F ≡ dσS
ltf

dxF

=
√

s

2

∫
dz3 dy2 dp2

T xaxbHAB

(
xa, xb,µ

2) 1

E1

DS/s(z3)

z3
, (4)

where A and B are the initial hadrons, a and b are the interacting partons, 1 and 2 are
the produced strange quarks and 3 is the final-state strange hadron S. The xF of the
detected strange quark is xF = 2mT sinhy1/

√
s where y1 is the rapidity of the strange

quark and
√

s is the hadron–hadron center of mass energy. We assume the simplest possible
fragmentation function,

DS/s(z) = BSδ(1 − z), (5)

with BS = 0.1, assuming that all 10 ground-state strange hadrons are produced at the same
rate to leading twist [28]. This choice of DS/s gives the hardest possible leading twist xF

distribution.
We define HAB(xa, xb,µ

2) as the convolution of the subprocess qq̄ annihilation and
gluon fusion cross sections with the parton densities,

HAB

(
xa, xb,µ

2)

=
∑
q

[
f A

q

(
xa,µ

2)f B
q̄

(
xb,µ

2) + f A
q̄

(
xa,µ

2)f B
q

(
xb,µ

2)]dσ̂qq̄

dt̂

+ f A
g

(
xa,µ

2)f B
g

(
xb,µ

2)dσ̂gg

dt̂
, (6)
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where q = u, d , and s. Although including the s quark in the sum over q in Eq. (6)
could lead to some over counting, the strange quark contribution to F from non-strange
projectiles is negligible, less than 0.01% for neutron and pion projectiles. It is somewhat
larger for strange projectiles, 2.5% for the Σ− and 5.6% for the Ξ−, but it is only
significant at large xF .

Hyperon parton distributions can be inferred from the proton distributions [27] by
simple counting rules. We can relate the valence s distribution of the Σ−, f Σ−

sv
, to the

proton valence d distribution, f
p
dv

, and the valence d distribution in the Σ−, f Σ−
dv

, to the

valence u in the proton, f p
uv , so that

1∫
0

dx f Σ−
sv

(
x,µ2) =

1∫
0

dx f
p
dv

(
x,µ2) = 1, (7)

1∫
0

dx f Σ−
dv

(
x,µ2) =

1∫
0

dx f
p
uv

(
x,µ2) = 2. (8)

We also identify the up quark in the sea of the Σ− with the strange quark in the proton sea,
f Σ−

u (x,µ2) = f
p
s (x,µ2). Similar relations hold for the antiquark distributions. Likewise,

for the Ξ−, we relate the valence s, f Ξ−
sv

, to the valence u in the proton, f
p
uv , and equate

the valence d distributions in both baryons so that,

1∫
0

dx f Ξ−
sv

(
x,µ2) =

1∫
0

dx f
p
uv

(
x,µ2) = 2, (9)

1∫
0

dx f Ξ−
dv

(
x,µ2) =

1∫
0

dx f
p
dv

(
x,µ2) = 1. (10)

Here also, f Ξ−
u (x,µ2) = f

p
s (x,µ2). The gluon distributions are assumed to be identical

for all baryons, f
p
g = f Σ−

g = f Ξ−
g . The leading order subprocess cross sections for

heavy quark production can be found in Ref. [34]. The fractional momenta carried by
the projectile and target partons, xa and xb, are xa = (mT /

√
s)(ey1 + ey2) and xb =

(mT /
√

s)(e−y1 + e−y2).
The leading-twist xF distributions with all four projectiles are shown in Fig. 1.

(Note that BS from Eq. (5) is included in the normalization.) We give the fusion xF

distributions, F , in π−p and Σ−p interactions at 345 GeV, np interactions at 260 GeV,
and Ξ−p interactions at 116 GeV, corresponding to the energies we investigate. The
π−p distribution is the broadest because the f π−

ūv
(xa)f

p
uv

(xb) contribution hardens the
xF distribution at large xF where the qq̄ channel dominates.

To study the effect of parameter choice on F , we have varied ms between 400 and
650 MeV, keeping µ = 2mT . The upper value is essentially too high for a realistic strange
quark mass but it is included both for a larger range of ms and to allow a comparison
of scale choice between µ = mT and 2mT . The ratios, R(ms,µ) of F calculated with
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Fig. 1. Leading-twist strange quark production in (a) π−p interactions at 345 GeV, (b) np interactions at 260 GeV,
(c) Σ−p interactions at 345 GeV, and (d) Ξ−p interactions at 116 GeV. The solid curves are the fusion results, F .
For projectiles with valence strange quarks, the excitation contributions, XpTmin

with pTmin = 1 GeV, are shown
in the dashed curves. The dot-dashed curves are the total, F + XpTmin

.

ms = 400 MeV and 650 MeV, relative to the default value of ms = 500 MeV are shown in
Fig. 2. Changing the mass strongly affects the total cross section but only weakly influences
the shape of the xF distributions. Reducing ms increases the cross section by a factor of
2–3 while increasing ms lowers the cross section by a similar factor.

We have also tried lowering the scale to mT , more consistent with that used for heavier
quarks. However, this is only possible for the top value of ms considered above, 650 MeV.
It is not clear how meaningful this comparison is because µ = mT is quite close to µ0,
the minimum scale of the GRV 94 LO parton densities. Near µ0, this set has a very rapid
scale evolution which strongly affects the shape of the parton densities. We show R(ms,µ)

for ms = 650 MeV and µ = mT relative to ms = 650 MeV and µ = 2mT in the dot-
dashed curves in Fig. 2. The scale dependence is large and strongly affects the ratios. The
uncertainty in the evolution at low scales and the anomalously large strange quark mass
makes these results useful only for illustrative purposes.

We have assumed only gg and qq̄ contributions to massive strange quark production.
We have also checked how the xF distribution would change if the strange quark was
treated as massless and all 2 → 2 scattering channels were included. Jet production of s

quarks is through processes such as gs → gs, qs → qs and q̄s → q̄s. (Similarly for the s̄.)
Including these processes increases the cross section by a factor of 4–8. While this factor
is not constant, it increases rather slowly with xF so that the difference in shape is only
important in the region where intrinsic production dominates, as discussed later.



140 R. Vogt, T.D. Gutierrez / Nuclear Physics A 726 (2003) 134–156

Fig. 2. We demonstrate how the parameter choice affects F by calculating the ratios R(ms,µ). The solid and
dashed curves are ratios to the defaults in Fig. 1, showing the mass dependence. The solid curves employ
ms = 400 MeV and µ = 2mT , the dashed curves, ms = 650 MeV and µ = 2mT . The dot-dashed curves are
calculations of the scale dependence. With ms = 650 MeV, we form the ratio with µ = mT to µ = 2mT . Results
are shown for (a) π−p interactions at 345 GeV, (b) np interactions at 260 GeV, (c) Σ−p interactions at 345 GeV,
and (d) Ξ−p interactions at 116 GeV.

Contributions from massless 2 → 2 scattering increase more rapidly at xF > 0 for
strange projectiles because the contribution from, for example, f Σ−

s (xa)f
p
g (xb), dominates

the scattering cross section. In the infinite momentum frame, f Σ−
sv

= f
p
dv

, see Eq. (8), and

f Σ−
sv

is large at large xa while f
p
g increases as xb decreases. To take this into account

quantitatively, we have incorporated “flavor excitation” of massive strange valence quarks.
The excitation matrix elements for massive quarks are found in Ref. [35]. The flavor
excitation cross section has a pole when pT → 0 so that a cutoff, pTmin , is required to
keep this cross section finite, as in jet production. We employ pTmin = 2ms = 1 GeV. The
leading-twist fusion cross section for strange projectiles is then augmented by

XpTmin
≡ dσS

lte

dxF

=
√

s

2

∫
dz3 dy2 dp2

T x ′
ax

′
bH

′
AB

(
x ′
a, x

′
b,µ

2) 1

E1

DS/s(z3)

z3
, (11)

where

H ′
AB

(
x ′
a, x

′
b,µ

2)

= f A
sv

(
x ′
a,µ

2){∑
q

[
f B

q

(
x ′
b,µ

2) + f B
q̄

(
x ′
b,µ

2)]dσ̂sq

dt̂
+ f B

g

(
x ′
b,µ

2)dσ̂sg

dt̂

}
, (12)

x ′
a = (mT ey1 +pT ey2)/

√
s and x ′

b = (mT e−y1 +pT e−y2)/
√

s. Note that there is no overlap
between the processes included in Eqs. (12) and (6) and thus no double counting. This
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excitation mechanism is effective only for hadrons with a strange quark in the final state
and thus does not affect the distributions with a produced s̄.

To summarize, for strange and antistrange final states produced by non-strange hadrons,

dσS
lt

dxF

= dσS
ltf

dxF

≡ F, (13)

as in Eq. (4). This relation also holds for antistrange final states from strange hadrons.
However, for strange hadron production by hadrons with non-zero strangeness, we also
consider

dσS
lt

dxF

= dσS
ltf

dxF

+ dσS
lte

dxF

≡ F + XpTmin
, (14)

where flavor excitation, Eq. (11), may play a role.
We remark that the role of flavor excitation in heavy quark production, as outlined in

Ref. [35], is questionable. It was first proposed as a LO contribution to the total cross
section and, as such, could be rather large if the heavy quark distribution in the proton is
significant. However, the heavy quark distribution in the proton is only non-zero above
the threshold mQ. In addition, parton distribution functions are defined in the infinite
momentum frame where the partons are treated as massless. Later studies at next-to-
leading order (NLO) [36] showed that these excitation diagrams are a subset of the NLO
cross section and suppressed relative to fusion production. They are only a small fraction
of the heavy flavor cross section and thus play no significant role at low energies. Strange
hadron production at large xF is then an important test of the excitation process.

Our calculations of XpTmin
and F + XpTmin

with pTmin = 1 GeV are shown in the
dashed and dot-dashed curves, respectively, in Fig. 1. When excitation is considered, as
in Σ−p and Ξ−p interactions, the xF distribution is hardened, particularly through the
f Σ−

s (x ′
a)f

p
g (x ′

b) and f Ξ−
s (x ′

a)f
p
g (x ′

b) contributions. These dominate at large xF where
f S

s (x ′
a) is large for valence strange quarks and f

p
g (x ′

b) is large at small x ′
b. The effect is

even stronger for the Ξ− since it has two valence strange quarks. Note that, except at small
xF , the total leading-twist cross section is equivalent to XpTmin

.
The hardening of the xF distributions due to flavor excitation is illustrated in Fig. 3

for several values of pTmin . We display the ratio R(pTmin) = XpTmin
/F for pTmin = 1 GeV

(solid curves), 0.5 GeV (dashed curves) and 2 GeV (dot-dashed curves). Decreasing pTmin

by a factor of two increases XpTmin
by an order of magnitude at low xF . Note that R(pTmin)

generally keeps increasing with xF since F is softer and peaks at xF = 0 while XpTmin
peaks at xF ∼ 0.25, see Fig. 2. The growth of the ratio is not as strong when pTmin is
increased and, in fact, for Σ−p interactions at 345 GeV, F > XpTmin

for all xF > 0. The
ratios are all larger for Ξ−p interactions at 116 GeV, due to both the increase of XpTmin
with two strange valence quarks and the smaller F at the lower energy. Even the choice of
pTmin = 2 GeV gives XpTmin

/F > 1 for xF > 0.25.
We also remark that, since our calculation is LO, the light strange quark mass would

mean quite large NLO corrections. The NLO K factor for charm production is a factor
of two or more [37]. The NNLO corrections to the charm cross sections are also quite
significant [30]. We can expect larger K factors for strange quark production. However, as
we discuss later, the relative intrinsic to leading twist rate is the most important factor in
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Fig. 3. We plot the ratio R(pTmin) = XpTmin
/F for pTmin = 0.5 GeV (dashed), 1 GeV (solid) and 2 GeV

(dot-dashed). Results are shown for (a) Σ−p interactions at 345 GeV and (b) Ξ−p interactions at 116 GeV.

determining the success of the model. This relative factor can be adjusted to compensate
for higher-order corrections as well as mass and scale variations.

Finally, we make an approximate estimate of the exponent a from Eq. (1) from the
average xF , 〈xF 〉, where

a = 1

〈xF 〉 − 2, (15)

as a simple comparison between the leading-twist calculations and the data. When the
distributions shown in Fig. 1 are averaged over xF > 0, the values of a obtained are larger
than those measured by WA89, as expected. For the pion and neutron beams, a = 5.2 and
8.7, respectively. Strangeness production by strange hadrons including fusion alone also
gives large values of a, 9 for the Σ− and 7.4 for the Ξ−. The xF distribution of strange
quarks produced by flavor excitation is considerably harder, a = 3.2 for the Σ− and 2.2 for
the Ξ−. Combining the two contributions, as in the dot-dashed curves in Fig. 1(c) and (d),
gives a somewhat larger value of a than for flavor excitation alone, a = 4.7 and 2.9 for Σ−
and Ξ− beams, respectively. The values of a obtained from Eq. (15) are all much higher
than those obtained from the data. Thus the leading twist results alone cannot explain the
shape of the measured Ξ− xF distributions.

3. The intrinsic model for strangeness

We now briefly discuss the intrinsic model for strangeness production, described in
detail for π−p interactions in Ref. [28]. Since all the data is at xF > 0, we only discuss
intrinsic production in the projectile.

The hadron wavefunction is a superposition of Fock state fluctuations in which the
hadron contains one or more “intrinsic” Q�Q pairs. These pairs can hadronize when the
hadron interacts, breaking the coherence of the state. The model, first developed for
charm [23,24], gives heavy quarks a larger fraction of the projectile momentum due to
their greater mass. The strange quark is lighter so that the momentum gained is not as
large. However, the intrinsic strangeness probability is larger, P 5

is ∼ 2%. For simplicity, we
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assume that the intrinsic probabilities are independent of the valence quark content of the
projectile. Then P 5

is is identical for nucleons and hyperons. The Fock state probabilities for
up to 3Q�Q pairs where at least one Q�Q pair is strange are given in Ref. [28].

In this paper, we focus on Ξ−(dss) and Ω(sss) production from π−(ūd), n(udd),
Σ−(dds) and Ξ−(dss) projectiles. The produced Ξ− shares one or more valence quarks
with all the projectiles. We study Ω production only by Ξ− projectiles, where two valence
quarks are in common.

Once the coherence of the Fock state is broken, the partons in the state can hadronize in
two ways. The first, uncorrelated fragmentation of the strange quark, is the same basic
mechanism as at leading twist. However, when the Fock state fluctuation includes all
the valence quarks of the final-state hadron, these quarks, in close spatial proximity and
small relative velocity, can coalesce into the final-state hadron and come on shell. Thus,
to calculate the full strange and antistrange hadron xF distributions in the intrinsic model,
we include uncorrelated fragmentation of the strange quark in every state considered and
coalescence from those states where it is possible. In Ref. [28], comparison with strange
baryon asymmetries suggested that fragmentation may not be an effective mechanism
since it may cost too much energy when the Fock state has minimal invariant mass. This
conclusion needs to be checked against inclusive xF distributions over a broader xF range.

In principle, the parton distributions of the hadron can be defined through such a Fock-
state expansion [38]. In each fluctuation, only the mass distinguishes the light and heavy
quark distributions. Thus it is not really possible in a given state to separate the “valence”
and “sea” distributions. All are similar as long as the quarks are light. One distinguishing
feature is our assumption that only strange quarks can produce strange final-state hadrons
by uncorrelated fragmentation. Thus for hyperon projectiles, uncorrelated fragmentation
may also be possible from Fock states with only light Q�Q pairs. These intrinsic light quark
states must be included in the total probability, as described in Ref. [28]. The probabilities
for these states must also be defined. We assume

P 5
iq =

(
m̂s

m̂q

)2

P 5
is ≈ 5%, (16)

P 7
iqq =

(
m̂s

m̂q

)2

P 7
isq = 1.75P 5

is, (17)

P 9
iqqq =

(
m̂s

m̂q

)4

P 9
issq = 1.25P 5

is, (18)

where we have used m̂s = 0.71 GeV and m̂q = 0.45 GeV for the effective transverse
masses of the constituent partons in the Fock state. We further assume that the probabilities
for the meson Fock configurations are equal to the baryon probabilities.

We remark that changing the parton masses in the intrinsic model does not strongly
affect the shapes of the probability distributions of the final state hadrons. If m̂ <

1 GeV, changing the mass most strongly affects the independent fragmentation probability
distributions since these depend only on the mass of the individual parton. However, when
all the partons are combined in the hadron, as in coalescence, the effect is washed out
since the xF distribution depends primarily on the ratio of the number of quarks in the
final-state hadron (2 for mesons, 3 for baryons) to the total number of quarks in the Fock
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state. A comparison of the charm and strange quark and hadron probability distributions in
Refs. [27,28], with m̂c/m̂s ≈ 2.6, shows that the difference is small.

We have only taken the 10 ground state strange and antistrange hadrons into account.
We assume that each hadron has a 10% probability for production by fragmentation,
neglecting the particle masses. The final-state xF distribution is then equivalent to that
of the s or s̄ quark. For coalescence, we count the number of strange and antistrange
hadron combinations possible in a given Fock state and assign each strange hadron or
antihadron that fraction of the total. The possible number of strange hadrons is greater than
the number of possible antistrange hadrons. We clearly err in the overall normalization by
simply including the ground state strange particles. However, the higher-lying resonances
have the same quark content with the same fragmentation and coalescence distributions
since all properties of the final-state hadrons except their quark content are neglected.

To obtain the total probability of each strange hadron produced from projectile hadron,
h, in the intrinsic model, we sum the probabilities over all the states with up to 3 intrinsic
Q�Q pairs. Thus

dPh
S

dxF

=
∑
n

∑
ru

∑
rd

∑
rs

β

(
1

10

dPnF
i(rss)(ruu)(rdd)

dxF

+ ξ
dPnC

i(rss)(ruu)(rdd)

dxF

)
. (19)

To conserve probability, β = 1 when the hadron is produced by uncorrelated fragmentation
alone and 0.5 when both fragmentation and coalescence are possible. When we assume
coalescence production only, we set PnF ≡ 0 and β ≡ 1. The weight of each state produced
by coalescence is ξ where ξ = 0 when S is not produced by coalescence from state
|nvrs(ss̄)ru(uū)rd(dd̄)〉. The number of up, down and strange Q�Q pairs is indicated by
ru, rd and rs , respectively. The total, ru + rd + rs = r , is defined as r = (n−nv)/2 because
each Q in an n-parton state is accompanied by a �Q. For baryon projectiles, n = 5, 7, and
9 while for mesons n = 4, 6, and 8. Depending on the value of n, ri can be 0, 1, 2 or 3,
e.g., in a |uudss̄dd̄dd̄〉 state, ru = 0, rd = 2 and rs = 1 with r = 3. Note that rs = 0 is only
possible when h is strange since no additional ss̄ pairs are thus needed to produce some
strange hadrons by coalescence. The total probability distributions, dPh

S /dxF , for S = Ξ−
and Ω are given in Appendix A.

4. A dependence of combined model

The total xF distribution for final-state strange hadron S is the sum of the leading-twist
fusion and intrinsic strangeness components,

dσS
hN

dxF

= dσS
lt

dxF

+ dσS
iQ

dxF

. (20)

The leading-twist distributions are defined in Eqs. (13) and (14). The total intrinsic cross
section, dσS

iQ/dxF , is related to dPh
S /dxF by

dσS
iQ

dxF

= σ in
hN

µ2
iQ

4m̂2
s

dPh
S

dxF

. (21)
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Fig. 4. The intrinsic model cross sections for Ξ− production are shown for (a) π−, (b) n, (c) Σ− and (d) Ξ−
projectiles. The solid curves are the results with independent fragmentation and coalescence while the dashed
curves are the results with coalescence alone.

The scale, µ2
iQ, was fixed at 0.1 GeV2 in intrinsic charm studies [27]. The inelastic hN

cross sections are taken from the Particle Data Group parameterizations [39] and are
evaluated at

√
s′ = √

s(1−|xF |) [26]. We have assumed that σ in
Ξ−N

= σ in
Σ−N

≈ σ in
ΛN . Thus

σ in
Ξ−N

= σ in
Σ−N

> σ in
pN > σ in

π−N
.

We have fixed µ2
iQ to the value determined in Ref. [27]. However, it could be left as a

free parameter to fit the data. Thus a change in ms or µ in the leading-twist cross section
could be compensated by a corresponding change in µ2

iQ to maintain a similar balance
between the intrinsic and leading-twist cross sections.

In Fig. 4 we plot dσΞ−
iQ /dxF for all projectiles considered. We show the results with

independent fragmentation and coalescence (solid curves) and with coalescence alone
(dashed curves). Independent fragmentation fills up the low xF part of the probability but
drops below the distributions with coalescence alone at high xF due to the relative β in
Eq. (19). The distributions with coalescence alone have a higher average xF . A comparison
of these distributions with the leading-twist results in Fig. 1 shows where each of the two
contributions will dominate the total xF distribution, Eq. (20).

We assume that the relative A dependence for leading-twist and intrinsic production is
the same as that for heavy quarks and quarkonia [25,27,33,40]. The A dependence of the
two component model is

σhA = Aγ σlt + AδσiQ, (22)

where the combination of the two terms should approximate Aα in Eq. (2). There are no
strong nuclear effects on open charm at leading twist so that the A dependence is linear at
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xF ∼ 0, α = 1, [41], dropping to α = 0.77 for pions and 0.71 for protons [33,42] at higher
xF where the intrinsic model begins to dominate. We assume that γ = 1 and δ = 0.77 for
pions and 0.71 for all baryons. Thus,

Aδ−γ ≈ A−1/3 as xF → 1. (23)

This relative A dependence, similar to that discussed earlier for light hadrons [19], is
included in our calculations. The proton and neutron numbers are taken into account in
the calculation of the leading-twist cross section. This isospin effect is small for fusion, F ,
which is dominated by the gg channel. In perturbative QCD, γ = 1 could be modified by
changes in the nuclear parton distributions relative to the proton [43]. However, the scale
for our perturbative calculation is too low for such models of these modifications to apply
[44,45] and are not included in our calculations.

5. Results

We begin by comparing the model to the WA89 pion data in Fig. 5. These data do not
strongly distinguish between leading-twist fusion and the full model. The intrinsic results
do not significantly depend on uncorrelated fragmentation. All three curves agree rather
well with the data, primarily because the fusion xF distribution is already fairly hard. Then
the intrinsic contribution is a small effect even though the d valence quark is common
between the π− and the Ξ−. The small intrinsic contribution is perhaps due to the fact that
P 6

iss is already rather small, ∼ 0.6%. We note that the calculated total cross sections agree
rather well with the measured ones despite the large uncertainties in the calculations.

Even though the intrinsic contribution is relatively small, as expected from a comparison
of Fig. 1(a) with Fig. 4(a), it significantly affects the value of a obtained from Eq. (15). The
difference between the a values found without and with uncorrelated fragmentation in the
intrinsic model is negligible for the pion beam. We find a ≈ 4.1 for the C target and 4.3 for
the Cu target relative to a = 5.2 for leading twist alone. These results are within the errors

Fig. 5. The model is compared to the 345 GeV WA89 pion data on (a) C and (b) Cu targets. The dotted curves
are leading-twist fusion, F , alone, the dashed curves include uncorrelated fragmentation and coalescence, and the
solid curves include coalescence alone. The data sets have been normalized to the cross section per nucleon. The
curves are normalized to the data at xF = 0.15.
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Fig. 6. The model is compared to the 260 GeV WA89 neutron data on (a) C and (b) Cu targets. The dotted curves
are leading-twist fusion, F , alone, the dashed curves include uncorrelated fragmentation and coalescence, and the
solid curves include coalescence alone. The data sets have been normalized to the cross section per nucleon. The
curves are normalized to the data at xF = 0.15.

of the WA89 fit to their data. The agreement is especially good since the two-component
model does not give a smooth falloff as a function of xF that can be easily quantified by a
single exponent.

It is also possible to calculate α(xF ) and the xF -integrated α from the ratios of
the distributions for different values of A. The calculations including both uncorrelated
fragmentation and coalescence generally give a smaller α and, hence, a stronger A

dependence. This is because fragmentation peaks at low xF , influencing the A dependence
sooner than coalescence alone which is only significant at intermediate xF . Thus α(xF ) ∼
0.9 for fragmentation and coalescence while α decreases from ∼ 1 at low xF to 0.86 at
high xF with coalescence alone. The integrated values are 0.93 and 0.98, respectively,
somewhat higher than the WA89 result but with the same general trend.

The overall agreement with the total cross section is not as good for the nA data,
shown in Fig. 6. Surprisingly, the distribution including uncorrelated fragmentation agrees
best with the data. This is perhaps because the energy of the secondary neutron beam is
least well determined. The energy spread is 15% compared to 9% for the pion and Σ−
beams. A small energy variation can have a large effect on the leading-twist cross section.
A 15% increase in the average neutron energy, from 260 GeV to 300 GeV, increases
dσlt/dxF by 80% at xF ∼ 0.25 while the intrinsic cross section is essentially unaffected.
At 260 GeV the intrinsic cross section including both independent fragmentation and
coalescence is equivalent to the fusion cross section at low xF . On the other hand, the
coalescence contribution is negligible at low xF and begins to emerge at xF ≈ 0.25. A shift
in the relative leading-twist and intrinsic production rates could easily reduce the effect of
coalescence alone to be more compatible with the data. The uncertainty in the energy of the
pion beam has a much weaker effect on the final result because the intrinsic contribution is
already small, as is obvious from Fig. 5.

The calculated exponents a are larger for the neutron than the pion, in agreement
with the WA89 measurements [17]. We find a ≈ 4.9 for C and 5.8 for Cu. Typically the
a obtained for fragmentation and coalescence is larger than that for coalescence alone
since eliminating the fragmentation contribution tends to increase 〈xF 〉. The stronger A
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Fig. 7. The model is compared to the 345 GeV WA89 Σ−A data on C and Cu targets. In (a) and (b), the leading
twist contribution is F while in (c) and (d), flavor excitation is also included, F + XpTmin

. The dotted curves
are for leading-twist alone, the dashed curves include uncorrelated fragmentation and coalescence and the solid
curves include coalescence alone. The data sets have been normalized to the cross section per nucleon. The curves
are normalized to the data at xF = 0.15.

dependence assumed for the intrinsic model has the effect of increasing a for larger nuclei.
Thus the a found for the C target agrees rather well with the WA89 data while the Cu data
suggest a harder distribution than our calculation implies. There is, however, a stronger A

dependence in our calculation than in the data since the measured values of a for the two
targets are less than one standard deviation apart. This stronger A dependence is reflected
in the calculated values of α, 0.87 when fragmentation and coalescence are included and
0.95 with coalescence alone.

Even though there is some A dependence in the model calculations, the relatively
small intrinsic contribution to the pion and neutron data leads to a rather weak overall
A dependence. Dominance of the leading-twist cross section at low to intermediate xF

results in a nearer-to-linear integrated α, as observed by WA89 [17].
We now turn to Ξ− production by the Σ− where the A dependence can be expected

to be stronger. For the first time, we have a valence strange quark in the projectile so
that we can compare the effectiveness of fusion alone with flavor excitation. We can also
better test the importance of uncorrelated fragmentation because coalescence production is
already possible in the 5-parton Fock state, |ddsss̄〉.

Our results are collected in Fig. 7. We first discuss the importance of uncorrelated
fragmentation to leading-twist fusion, F , alone, Fig. 7(a) and (b). The leading-twist
contribution is rather steeply falling. Including both uncorrelated fragmentation and
coalescence broadens the xF distribution but cannot match the hardness of the measured
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xF distribution. Eliminating the fragmentation contribution produces a much harder
distribution for xF � 0.15, matching the shape of the data relatively well.

The calculations are all normalized to the xF = 0.15 point to more easily compare
the shapes of the distributions. Including fragmentation gives better agreement at low xF

because uncorrelated fragmentation peaks close to xF ∼ 0, filling in the low to intermediate
xF range. Coalescence, on the other hand, always produces strange hadrons with 〈xF 〉 �
0.3, broadening the distribution only in this region. Thus without fragmentation the
calculations overestimate the data at xF ∼ 0. The data seem to indicate that uncorrelated
fragmentation is not an effective mechanism for intrinsic production, in agreement with
the conclusions of Ref. [28].

The agreement of the data with the solid curves in Fig. 7(a) and (b) is good but
not perfect. The calculation overestimates the data at high xF . Recall that for the
neutron, the 15% spread in the beam momentum could result in an overestimate of the
intrinsic contribution, as previously discussed. Although the possible spread in the Σ−
beam momentum is smaller, it could affect the relative intrinsic contribution at low to
intermediate xF . At large xF , the effect on the shape would be negligible because the
intrinsic contribution dominates. Thus, given the inherent uncertainties in the model and
the data, the agreement is rather satisfactory.

We have obtained the values of a from 〈xF 〉, both over all xF and for xF > 0.1, avoiding
the strong change in slope of the solid curves when coalescence alone is included in the
intrinsic result. When we integrate over xF > 0, a = 3.02 for C and 3.39 for Cu with both
uncorrelated fragmentation and coalescence while with coalescence alone, a = 1.24 for C
and 1.78 for Cu. Considering only the range xF > 0.1, we find a = 1.56 for C and 1.63 for
Cu with fragmentation and 0.43 for C, 0.57 for Cu without fragmentation. The calculated
as suggest considerably harder xF distributions in the more limited xF region, particularly
when coalescence alone is considered. However, none of the results are in good agreement
with a ≈ 2, as obtained by WA89 for xF � 0.4. This is not surprising since the solid
curve is harder than the data for xF > 0.1. In any case, the coalescence contributions are
difficult to fit to a power law since they approach zero at both xF = 0 and xF = 1 with a
peak at intermediate xF , see Fig. 4. The various contributions, all with somewhat different
magnitudes due to the relative probabilities, peak at different values of xF , complicating
the situation further.

Calculations of α give α ≈ 0.8 for the integrated cross sections but α ≈ 0.7 for xF > 0.4,
with and without fragmentation in the intrinsic model, rather consistent with the WA89
result. However, as a function of xF , coalescence alone is more consistent with the
measurements since α ≈ 1 at xF ≈ 0, decreasing to 0.71 as xF → 1, as expected from
Eq. (22).

We now check if our results improve when we include flavor excitation, Eq. (14), shown
in Fig. 7(c) and (d). Now the baseline leading twist distribution, F + XpTmin

, is harder
than F alone, as shown in Fig. 1(c). However, although the distribution is broader, it still
drops six orders of magnitude over the entire xF range with pTmin = 1 GeV while the
intrinsic contribution with coalescence alone changes only by a factor of 10 for xF > 0.3,
see Fig. 4(c). Indeed, at these values of xF , the intrinsic contribution is larger than both F

and F + XpTmin
. Thus including flavor excitation also cannot describe the data without the

intrinsic coalescence component, as in Fig. 7(a) and (b).
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The total cross section is in reasonable agreement with that measured by WA89.
Decreasing pTmin further can harden the distribution but still cannot describe the shape
of the data. A lower pTmin enhances the total cross sections considerably so that, if
pTmin = 0.25 GeV, the cross section is overestimated by several orders of magnitude.
The intrinsic contribution is then negligible and decreasing pTmin actually degrades the
agreement with the data. Increasing pTmin also cannot improve the agreement since the
excitation contribution does not significantly harden the leading-twist xF distribution. Thus
there is no clear evidence for flavor excitation.

The trends in the A dependence are similar when excitation is included although the
values of a obtained are suggestive of harder xF distributions than with leading-twist fusion
alone. In particular, the excitation contribution is harder at low xF , see Fig. 1, causing the
change in slope due to the hardening of the intrinsic distribution with coalescence alone to
be less abrupt. Nonetheless, the agreement with the measured value of a is not significantly
improved. The calculated values of α(xF ) are similar to those with leading-twist fusion
alone but the integrated values of α are somewhat larger, ≈ 0.87, due to the larger leading-
twist baseline. Thus the A dependence also does not suggest that flavor excitation is a
significant contribution to strange hadron production.

To summarize, the A dependence of Ξ− production by Σ− is stronger because the
intrinsic contribution with coalescence dominates the xF distribution already at xF ∼ 0.1.
Therefore the integrated A dependence is reduced nearly a factor of A1/3 relative to the
pion and neutron data, as shown in Eqs. (22) and (23). Thus the trends of the model are in
agreement with the WA89 data.

Finally, we compare our intrinsic model calculations with the invariant Ξ− and Ω cross
sections measured in Ξ−Be interactions at 116 GeV [14]. Since intrinsic production is
expected to be a low pT effect [25], we only compare to the low p2

T bin, 0 < p2
T <

0.4 GeV2 [46]. The data and our calculations are shown in Fig. 8. We have multiplied
our xF distributions by 2mT coshy1/

√
s to obtain the invariant cross section. The invariant

xF distributions are harder as a function of xF .
Because the initial and final states are identical for Ξ− production, the intrinsic

contribution increases with xF . However, even with coalescence alone, the increase does
not continue beyond xF ∼ 0.4. A similar but weaker effect is seen for the Ω where there
are two strange quarks in common with the Ξ−. Therefore, we have tried to identify a
mechanism that would increase the cross section beyond xF ∼ 0.4. One possibility is a
“Pomeron-like” parton in the Fock state. Since the Pomeron has quantum numbers similar
to two gluons, it can be exchanged between two projectile valence quarks. A |dssP〉 state,
where P signifies the “Pomeron”, would result in Ξ− states at high xF while avoiding the
δ(1 − xF ) delta function for the 3-particle Fock state. A Ξ− from such a configuration
would have a distribution peaking at xF → 1. It is also possible to imagine a |dssss̄P〉
state from which both the Ξ− and Ω could be produced. In this case, the distribution
would peak away from xF ∼ 1. We included “Pomeron” production from both states
assuming that P 4

iP = P 5
iq ∼ 5% and that P 6

isP = P 7
iqq ∼ 3.5%, giving these configurations

large probability. The results, shown in the dot-dashed curves in Fig. 8, agree relatively
well with the data, especially for the Ξ−. The Ω data are still underestimated but the trend
is now in the right direction.
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Fig. 8. The model is compared to the 116 GeV Ξ−Be data. In (a) and (b), the leading twist contribution is F while
in (c) and (d), flavor excitation is also included, F +XpTmin

. The dotted curves are for leading-twist fusion alone,
the dashed curves include uncorrelated fragmentation and coalescence, the solid curves include coalescence alone
and the dot-dashed curves include a diffractive “Pomeron” contribution. The data sets have been normalized to
the cross section per nucleon. The curves are normalized to the data at xF = 0.15.

Of course, this “Pomeron” is a rather artificial solution, especially when the initial and
final states are not identical. If it is correct, it should also be included in Σ−p → Ξ−X

calculations shown in Fig. 7. We have checked this process and found that the resulting
xF distribution is far too hard. Therefore, the practicality of the mechanism is questionable
and the “Pomeron” results should not be taken too seriously.

Our calculations with flavor excitation are compared to the data in Fig. 8(c) and (d).
The results do not improve, even when the “Pomeron” is included. Indeed, the results
with excitation underestimate the shape of the data at high xF more than with fusion
alone. Decreasing pTmin increases the leading-twist contribution, reducing the agreement
with the shape of the distribution. Increasing pTmin gives results very similar to those in
Fig. 8(a) and (b) since the intrinsic contribution is again dominant. Therefore we conclude
that flavor excitation is not an effective mechanism for strange hadron production at low
pT . This conclusion is consistent with the interpretation of the excitation diagrams as NLO
contributions to the production cross section, as discussed previously.

We have also calculated the exponent a′, see Eq. (3), for these distributions with
xF > 0.5. The results are negative for all the cases shown. We find a′ ≈ −0.45 with and
without uncorrelated fragmentation and −0.5 with the “Pomeron”. These values are rather
consistent with those obtained for the low p2

T selection of the Ξ− data. The corresponding
values for Ω production are somewhat lower, ≈ −0.41, without the “Pomeron” but
somewhat higher, ≈ −0.54, with it.
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6. Conclusions

We have compared our intrinsic calculations to Ξ− production by π−, n and Σ−
projectiles and to Ξ− and Ω production by Ξ− projectiles. We find good agreement with
the WA89 data for leading-twist fusion and coalescence using our default parameters.
Large uncertainties exist in the leading-twist cross sections, as shown in Section 2.
However, the most important parameter is µ2

iQ in the intrinsic cross section, Eq. (21),
which fixes the relative leading-twist and intrinsic contributions. Then large changes in
the leading-twist cross section due to uncertainties in mass or scale can be reduced by
rescaling µ2

iQ. We showed that changing the parameters in the leading-twist cross section
does not significantly affect the shape of the xF distributions, only their overall magnitude,
except when the scale approaches µ0. Thus, with appropriate rescaling of the relative
contributions through µ2

iQ, the intrinsic contribution will still dominate the xF distributions
at intermediate and large xF , leaving the agreement with the data unchanged except for an
overall normalization factor.

We have also excluded flavor excitation as a significant mechanism of low pT strange
hadron production. This conclusion is in agreement with results for heavier flavors like
charm and bottom. The apparent difficulties with uncorrelated fragmentation seen in
Ref. [28] are confirmed here. Thus coalescence production is the most effective mechanism
for strange hadron production in the intrinsic model. The leading charm analysis should
perhaps be revisited in light of this conclusion.

The conclusions that can be reached from the Ξ−-induced interactions at 116 GeV are
less clear. It is possible that a “Pomeron”-like state could exist in the hadron wavefunction
but its applicability to Ω production is somewhat doubtful. Therefore the interpretation
of these data within the intrinsic model is rather inconclusive. More standard studies of
diffractive production in Ξ−Be → Ξ−X should be performed.
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Appendix A

Here we give the relevant probability distributions in the intrinsic model for Ξ−
and Ω production used in our calculations. To more clearly distinguish between the
probability distributions including uncorrelated fragmentation and coalescence and those
with coalescence alone, both distributions are given. The probability distribution with both
contributions is given first, followed by that with coalescence alone.

First, we give the distributions relevant to the WA89 measurements. We reproduce the
Ξ− probability distribution from a π− [28],
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From a neutron projectile,
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The Ξ− distribution from a Σ− projectile is,
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We now present the relevant probability distributions for Ξ− and Ω production from a
Ξ− projectile. First we give the Ξ− distributions,
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Finally, we give the Ω distribution from a Ξ− projectile,
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